1. The PHF definition we have seen requires that with "decent" probability, \(a_{\{m_i\}} \neq 0 \) for \(m_1, \ldots, m_w \), but \(a_{\{m^*_j\}} = 0 \) for \(m^*_1, \ldots, m^*_v \). Why can't we expect to have \(v \) and \(w \) both be large simultaneously?

Such a definition would not be achievable.

Reason why such a definition would not be achievable: let \(p \) be the probability (over \(m \), kappa and tau) that \(a_{\{m\}} = 0 \) for a random \(m \). Choose random \(m_1, \ldots, m_k \) and random \(m^*_1, \ldots, m^*_k \). Then \(a_{\{m_i\}} \neq 0 \) and \(a_{\{m^*_i\}} = 0 \) for all \(i \) holds with probability \(p^k \cdot (1-p)^k \leq (1/2)^{2k} \) even for random kappa and tau.

2. A programmable hash function (with "sufficient" programmability parameters)... (choose as many options as you think are appropriate)

- **A**...is an algebraic tool that should help in enabling a security reduction.
- **B**...is collision-resistant if the DLog assumption holds in the underlying group.
- **X**C...by definition requires a pairing.

To answer B: Assume the PHF \(H \) is \((1,1,\gamma)\)-programmable. Then we can break DLog in the underlying group with probability \(\gamma \cdot Adv_CR() \), where \(\gamma \) is an adversary against the collision resistance of \(H \).

Proof: Let \(h = g^x \) be a DLog instance. Assume the adversary wins the CRHF-game, i.e. he outputs two messages \(m, m' \) such that \(H(m) = H(m') \) and assume that \(a_{\{m\}} = 0 \) and \(a_{\{m'\}} \neq 0 \). (The latter happens with probability \(\gamma \) by the \((1,1,\gamma)\)-programmability of \(H \)). Then \(h^{\{a_{\{m'\}}\}} g^{\{b_{\{m'\}}\}} = g^{\{b_{\{m\}}\}} h^{\{a_{\{m'\}}\}} = g^{\{b_{\{m\}} - b_{\{m'\}}\}} h = g^{\{b_{\{m\}} - b_{\{m'\}}\}/a_{\{m'\}}} \), i.e. \(x = (b_{\{m\}} - b_{\{m'\}})/a_{\{m'\}} \).