Pairings

1. Which of the following properties does a pairing \(e: G_1 \times G_2 \rightarrow G_T \) have? (Mark as many options as you think are correct.)

- A) Bilinearity
- B) Collision-resistance
- C) Non-degeneracy

2. How many evaluations of a pairing \(e: G \times G \rightarrow G_T \) does each party have to perform in Joux's 3-party key exchange protocol to compute a shared key?

 1

3. (Requires knowledge about common cryptographic assumptions in cyclic groups.) Intuitively, a pairing allows one "multiplication in the exponent", at the cost of moving to another group \(G_T \). Why is a pairing with \(G_1=\mathbb{G}_2=\mathbb{G}_t \) (and \(e(g,g)=g \)) probably not very useful?

 Such a pairing would solve the CDH (computational Diffie-Hellman) problem. Not many applications of cyclic groups with easy CDH problem are known.

 Details:
 If \(e(g,g)=g \), we can solve the CDH problem by computing \(e(g^a, g^b) = e(g,g)^{ab} = g^{ab} \).

 In general however, \(e(g,g) \) can be any group generator, i.e. \(e(g,g) = g^x \) for some \(x \in \mathbb{Z}_p^* \). But then we can define another pairing \(e' \) by \(e'(h,h') = e(h,e(h',g^{(1/(x^2))})) \) and this paring has the property \(e'(g,g) = g \).

 The factor \(g^{(1/(x^2))} \) can be computed as follows: \(g^{(1/(x^2))} = g \cdot (x^{(p-3)}) \) where the latter can be computed with \(O(\log p) \) pairing evaluations in a square-and-multiply fashion.

 See also Lecture 11, Slide 4.

 \(^1\) For this equality we use Fermat's little theorem: \(x^p \equiv x \pmod{p} \iff x^{(p-3)} \equiv 1/(x^2) \pmod{p} \).