Chameleon hashing and chameleon signatures

1. Collision-resistant chameleon hash functions... (choose as many options as you think apply)
 - [X] A... can be constructed from the discrete logarithm assumption
 - [X] B... can be constructed from the RSA assumption
 - [] C... can be constructed from any one-time signature scheme
 - [✓] D... imply the existence of one-time, i.e., EUF-1-CMA secure signature schemes
 - [✓] E... imply the existence of many-time, i.e., EUF-CMA secure signature schemes (Since Chameleon hash functions imply one-way functions and one-way functions imply EUF-CMA secure signatures)

2. In a chameleon signature scheme, an ordinary signature scheme is used to sign the hash value \(ch(m,r) \) for the message \(m \) to be signed, fresh randomness \(r \), and the chameleon hash function \(ch \) supplied by the signer.
 - [X] T True
 - [✓] F False

3. Why is a collision-resistant chameleon hash function necessarily randomized? More formally, why is it not possible to have a collision-resistant chameleon hash function with randomness space, say, \(R=\{0\} \)?

 Because then, TrapColl would always output \(r'=0 \), and so everybody could generate collisions (even without the trapdoor).

4. If collision-resistant chameleon hash functions exist, then so do (deterministic but keyed, i.e., with a key generation algorithm) collision-resistant hash functions.
 - [✓] T True
 - [X] F False