 Collision-resistant chameleon hash functions can be used to transform any EUF-CMA secure signature scheme into one that is sEUF-CMA secure.

1. Collision-resistant chameleon hash functions can be used to transform any EUF-CMA secure signature scheme into one that is sEUF-CMA secure.
 - T True
 - F False

2. sEUF-CMA security guarantees... (choose as many options as you think apply)
 - A ...that only one signature per message exists for any fixed public key.
 - B ...that at most one signature per message can be found efficiently given a fixed keypair (pk,sk).
 - C ...everything that EUF-CMA security guarantees (and possibly more).
 - D ...everything the EUF-naCMA security guarantees (and possibly more).

3. How many instances (i.e., keys) of a chameleon hash function does the transformation from the previous question use?

4. Would the proof of the “CH + EUF-CMA → sEUF-CMA” theorem also work for a construction that omits the second CHF F (so that h and not \tilde{m} is signed)? Why/why not?